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Following Hergarten and Neugebauer[Phys. Rev. Lett.88, 238501, 2002] who discovered aftershocks and
foreshocks in the Olami-Feder-Christensen(OFC) discrete block-spring earthquake model, we investigate to
what degree the simple toppling mechanism of this model is sufficient to account for the clustering of real
seismicity in time and space. We find that synthetic catalogs generated by the OFC model share many prop-
erties of real seismicity at a qualitative level: Omori’s law(aftershocks) and inverse Omori’s law(foreshocks),
increase of the number of aftershocks and of the aftershock zone size with the mainshock magnitude. There
are, however, significant quantitative differences. The number of aftershocks per mainshock in the OFC model
is smaller than in real seismicity, especially for large mainshocks. We find that foreshocks in the OFC catalogs
can be in large part described by a simple model of triggered seismicity, such as the epidemic-type aftershock
sequence(ETAS) model. But the properties of foreshocks in the OFC model depend on the mainshock
magnitude, in qualitative agreement with the critical earthquake model and in disagreement with real seismicity
and with the ETAS model.
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I. INTRODUCTION

Describing and modeling the space-time organization of
seismicity and understanding the underlying physical mecha-
nisms remain important open challenges. Inspired by statis-
tical regularities such as the Gutenberg-Richter[1] and the
Omori’s [2] laws, a wealth of mechanisms and models have
been proposed. New classes of models inspired or derived
from statistical physics accompanied and followed the
proposition, repeated several times under various forms in
the last 25 years, that the space-time organization of seismic-
ity is similar to the behavior of systems made of elements
interacting at many scales that exhibit collective behavior
such as in critical phase transitions. This led to the concepts
of the critical earthquake, of self-organized criticality, and
more generally of the seismogenic crust as a self-organized
complex system requiring a so-called system approach.

Our purpose here is to study in depth maybe the simplest
model of the class of self-organized critical models that ex-
hibit a phenomenology resembling real seismicity, the so-
called Olami-Feder-Christensen(OFC) sandpile model.
Large shallow earthquakes are always followed by a very
large seismicity rate(called “aftershocks”) and are some-

times preceded by an increase of seismicity rate(“fore-
shocks”). Many different mechanisms have been proposed to
explain the occurrence of foreshocks and aftershocks. The
OFC model uses only one simple local interaction between
discrete fault elements but nevertheless exhibits foreshocks
and aftershocks[3]. The motivation of our present work is to
study the main characteristics of foreshocks and aftershocks
in the OFC model and to understand the mechanisms respon-
sible for earthquake clustering in the OFC model. For this,
we will interpret our analysis of the OFC catalogs in the light
of two end-member models representing two opposite views
of seismicity. The first one, mentioned above, is the critical
earthquake model, which views a mainshock as the special
outcome of a global self-organized buildup occurring at
smaller scales. The second end-member model is called the
epidemic-type aftershock sequence(ETAS) model[4], which
is a phenomenological construction based on the well-
documented Gutenberg-Richter law, the Omori’s law, and the
scaling of the number of aftershocks with the mainshock
size.

The plan of our paper is the following. Section II presents
the OFC model, Sec. III summarizes the phenomenology of
real seismicity, and Sec. IV presents the critical earthquake
model and the ETAS model. Section V presents the results
obtained for the OFC model, which are compared with real
seismicity and with the two reference models(ETAS and
critical earthquake). We discuss in Sec. VI possible mecha-
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nisms for foreshocks and aftershocks in the OFC model. Sec-
tion VII concludes.

II. OLAMI-FEDER-CHRISTENSEN MODEL

The Olami-Feder-Christensen model[5] is defined on a
discrete system of blocks or of fault elements on a square
lattice, each carrying a force. The forceFi of a given element
i that exceeds a fixed thresholdFc (taken equal to 1 without
loss of generality) relaxes to zero. Such a toppling incre-
ments the forces on its nearest neighbors by a pulse which is
a saø1/4d times the forceFi of the unstable element:

Fi ù Fc ⇒ HFi → 0,

Fnn → Fnn + aFi .
J s1d

This loading to nearest neighbors can in turn destabilize
these sites, creating an avalanche. Between events, allFi’s
increase at the same constant rate, mimicking a uniform tec-
tonic loading. We choose the time scale in such a way that
the rate of driving is unity. Then one time unit corresponds to
the time needed to reload a site from zero force to its thresh-
old of instability. The OFC model can be obtained as a sand-
pile analogue of block-spring models[6], with the interpre-
tation

a =
1

ni + k
, s2d

whereni is the actual number of neighbors of sitei. Hereni
is always 4 in the case of a square lattice with rigid-frame
boundaries. For free boundary conditions used in this study
ni =4 in the bulk,ni =3 at the boundaries, andni =2 at the
corners. The symbolk denotes the elastic constant of the
upper leaf springs, measured relatively to that of the other
springs between blocks. The OFC model is conservative for
k=0 for which a=0.25 and is nonconservative fork.0 for
which a,0.25. In the following, we will compare results
obtained fork=0.5, 1, 2, and 4—that is, fora=0.222, 0.2,
0.167, and 0.125.

With open or rigid boundary conditions, this model seems
to show self-organized criticality(SOC) [7–9] even in the
nonconservative casea,0.25. SOC is the spontaneous con-
vergence of the dynamics to a statistically stationary state
characterized by a time-independent power law distribution
of avalanches. The size of an avalanche is taken to be the
spanned areas. The underlying mechanism for SOC seems
to be the invasion of the interior by a region spreading from
the boundaries, self-organized by the synchronization or
phase-locking forces between the individual elements[10].

Long-term correlation between large events have been
documented but, only very recently, Ref.[3] found the oc-
currence of genuine sequences of foreshocks and aftershocks
that bear similarities with real earthquake catalogs. This dis-
covery suggests that a unique mechanism is sufficient to pro-
duce a Gutenberg-Richter-like distribution as well as realis-
tically looking foreshocks and aftershocks, without the need
for viscous crust relaxation or other mechanisms. Similarly,
Ref. [11] found critical precursory activity and aftershock
sequences in a sandpile model. However, the precursors and

aftershocks resulted from the interplay between the built-in
hierarchy of domains and a conservative sandpile dynamics.
The remarkable observation of Ref.[3] is that such a hierar-
chy is not needed for foreshocks and aftershocks to occur,
when the sandpile dynamics is dissipative. However, a hier-
archy of faults may be needed to obtain a larger number of
triggered events than found for the OFC model, in order to
be more compatible with real seismicity. Our goal here is to
investigate in details the properties of the foreshocks and
aftershocks in the simplest situation—i.e., in the OFC model.

Our simulations presented below are performed in two-
dimensional square latticesL3L with L=512, 1024, and
2048. Let us give a correspondence between time and space
units in the OFC model and in the real seismicity. If we
consider that the lattice ofL=2048 blocks represents a fault
of 2003200 km (we neglect the asymmetrical aspect ratio
of real faults), the minimum earthquake of sizes=1 gener-
ated by the OFC model has a length of<0.1 km, corre-
sponding to a magnitude-2 earthquake. The recurrence time
of M ù5 earthquakes in Southern California is about 100
days, corresponding to about 1000 days for a region of 200
3200 km. In the OFC model withL=2048, the recurrence
time of an event of sizes.1000, equivalent to a
magnitude-5 earthquake, is about 1.7310−3. This gives the
correspondence between time units timeOFC in the OFC
model and in real seismicity:

timeOFC= 10−4 ⇔ timereal= 60 days. s3d

III. PHENOMENOLOGY OF REAL SEISMICITY

The empirical properties of real seismicity discussed in
this paper are the following.

(i) The Gutenberg-Richter (GR) law[1] states that the
density distribution functionPsmd of earthquake magnitudes
m is

P0smddm= b lns10d10−bsm−mdddm, s4d

with a b value usually close to 1. Heremd is a lower bound
magnitude of detection, such thatP0smd is normalized to 1
by summing over all magnitudes abovemd.

The qualifying property of SOC in the OFC model is the
existence of a GR-like distribution of avalanches sizes. There
are several measures of sizes. If we take the size defined as
the areas spanned by an avalanche, the distribution of event
sizes is given by Eq.(4), where the magnitudem is defined
by

m= 2 + log10ssd, s5d

in analogy with real seismicity. The number of topplings is
not exactly equal tos since a site can topple more than once
in a given avalanche, possibly being reloaded during its de-
velopment. However, the difference is negligible for our pur-
pose. No multiple relaxations were observed forkù2. For
k=1, less than 1 multiple relaxation per 100 000 earthquakes
was found.

(ii ) The (modified) Omori’s law[2,12,13] describes the
decay of the seismicity rate triggered by a mainshock with
the timet since the timetc of the mainshock
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Nastd =
Ka

st − tc + cdpa
, s6d

with an Omori’s exponentpa close to 1. This decay law can
be detected over time scales spanning from weeks up to de-
cades, depending on the mainshock magnitude. The time
shift constantc ensures a finite seismicity rate just after the
mainshock and is often of the order of minutes.

(iii ) The inverse Omori’s law[12,14,15] describes the av-
erage increase of seismicity observed before a mainshock
and is like Eq.(6) with t− tc replaced bytc− t:

Nfstd =
Kf

stc − t + cdpf
, s7d

with the inverse Omori’s exponentpf usually close to or
slightly smaller thanpa [16]. In contrast with Omori’s law
which can be clearly observed for a single mainshock, the
inverse Omori’s law(7) can only be found by averaging the
seismicity rate before a large number of mainshocks[23],
because there are huge fluctuations of the rate of seismicity
before individual mainshocks[23].

(iv) The number of aftershocks increaseswith the magni-
tudem of the mainshock as

Nasmd , 10aam, s8d

where the exponentaa is usually found in the range 0.5–1
(see[17] and references therein). This value of the exponent
aa may reveal a fractal spatial distribution of aftershocks
[17].

(v) Aftershock diffusion. Several studies have reported
“aftershock diffusion,” the phenomenon of expansion or mi-
gration of aftershock zone with time[18,19]. However, the
present state of knowledge on aftershock diffusion is confus-
ing because contradictory results have been obtained, some
showing almost systematic diffusion whatever the tectonic
setting and in many areas in the world, while others do not
find evidence of aftershock diffusion[20,21]. The shift in
time from the dominance of the aftershock activity clustered
around the mainshock at short times after the mainshock to
the delocalized background activity at large times may give
rise to an apparent diffusion of the seismicity[21].

(vi) Foreshock migration. Foreshock migration towards
the mainshock as time increases up to the time of the main-
shock has also been documented[12,22,23] but may be due
to an artifact of the background activity, which dominates the
catalog at long times and distances from the mainshock[23].
Indeed, by an argument symmetrical to that for aftershocks,
the shift in time from the dominance of the background ac-
tivity at large times before the mainshock to that of the fore-
shock activity clustered around the mainshock at times just
before it may be taken as an apparent inverse diffusion of the
seismicity rate.

(vii ) The average distance Ra between aftershocks and the
mainshock rupture epicenterhas been found to be propor-
tional to the rupture size of the mainshock, leading to the
scaling law[24]

Ra , 100.5m , s0.5, s9d

relating Ra and the mainshock magnitudem or the main-
shock rupture surfaces. A similar law is suggested to hold
for the average distanceRf between foreshocks and the
mainshock[25,26], but other studies[23] did not observe an
increase ofRf with m.

(viii ) Foreshock magnitude distribution. Many studies
have found that the apparentb value of the magnitude dis-
tribution of foreshocks is smaller than that of the magnitude
distribution of the background seismicity and of aftershocks
(see[16] and references therein).

(ix) Number of foreshocks and aftershocks per mainshock.
Foreshocks are less frequent than aftershocks[12,15,27]. The
ratio of foreshock to aftershock numbers is in the range 2–4
for m=5–7 mainshocks, when selecting foreshocks and af-
tershocks at a distance in the rangeR=50–500 km from the
mainshock and for a time in the rangeT=10–100 days be-
fore or after the mainshock[12,15,20,22,27].

IV. END-MEMBER MODELS OF SEISMICITY: ETAS
AND CRITICAL EARTHQUAKE MODELS

A. ETAS model

The epidemic-type aftershock sequence model was intro-
duced in[4] and in [28] (in a slightly different form). Con-
trary to what its name may imply, it is not only a model of
aftershocks but a general model of seismicity. This model
avoids the division between foreshocks, mainshocks, and af-
tershocks because it uses the same laws to describe all earth-
quakes. Because of its simplicity, it is natural to consider it
as a null hypothesis to explain the OFC catalogs and real
data. Its choice as a reference is also natural because it is
nothing but a branching model of earthquake interactions
and can thus be considered as a mean-field approximation of
more complex interaction processes. Branching processes
can also be considered as natural mean-field approximations
of SOC models and in particular of the OFC model[29] (see
also Chap. 15 in[9]). The approximation consists usually in
the fact that branching models neglect the loops occurring in
the cascade characterizing a given avalanche. Note that stan-
dard branching models study the development of a single
avalanche while the ETAS model describes a catalog of
earthquakes.

The ETAS model uses three of the above empirical laws
as direct inputs[Gutenberg-Richter law(4), Omori’s law(6),
and aftershock scaling law(8)]. In the ETAS model, each
event of magnitudem triggers its own primary aftershocks
(considered as point processes) according to the following
distribution in time and space:

fmsr,tddrdt = K10aam ucudt

st + cd1+u

mdmdr

sr + dd1+m , s10d

wherer is the spatial distance to the main event. The spatial
regularization distanced accounts for the finite rupture size.
The power law kernel in space with exponentm quantifies
the fact that the distribution of distances between pairs of
events is well described by a power law[30]. The ETAS
model assumes that each primary aftershock may trigger its
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own aftershocks(secondary events) according to the same
law, the secondary aftershocks themselves may trigger ter-
tiary aftershocks, and so on, creating a cascade process. The
exponent 1+u is not the observable Omori’s exponentpa but
defines the “bare” Omori’s law for the aftershocks of first
generation. The whole series of aftershocks, integrated over
the whole space, can be shown to lead to a “renormalized”
(or dressed) Omori’s law, which is the total observable
Omori’s law [31]. To prevent the process from dying out, a
small Poisson rate of uncorrelated seismicity driven by plate
tectonics is added to represent the effect of the tectonic load-
ing in earthquake nucleation.

The ETAS model predicts the following properties.
(i) The total number of triggered events(including all

generations of aftershocks) has the same average power law
increase(8) with the mainshock sizes as the number of
first-generation aftershocks[31].

(ii ) The ETAS model predicts a renormalized Omori’s law
(for aftershocks of all generations) different from the “bare”
Omori’s law ,1/st+cd1+u defined in Eq.(10) for the first-
generation aftershocks, with a renormalized exponentpa
ø1+u [31].

(iii ) An inverse Omori’s law for foreshocks is found to
result simply from the existence of the “bare” Omori’s law
(10) for aftershocks and from cascades of multiple triggering
[16].

(iv) The ETAS model predicts a modification of the mag-
nitude distribution(4) before a mainshock of magnitudemM,
characterized by an increase of the proportion of large earth-
quakes according to the following expression[16]:

PsmumMd = f1 − QstdgP0smd + QstddPsmd, s11d

whereP0smd is the unconditional GR distribution(4),

dPsmd = b8 lns10d10−b8sm−m0d, with b8 = b − aa, s12d

and

Qstd =
C

stc − tdn , with n =
usb − aad

aa
, s13d

tc is the time of the mainshock, andC is a numerical con-
stant. The prediction(11) with Eqs.(12) and(13) is that the
magnitude distribution is modified upon the approach of a
mainshock by developing a bump in its tail which takes the
form of a growing additive power-law contribution with a
new b8 value.

(v) In the ETAS model, the properties of foreshocks are
independent of the mainshock magnitude, because the mag-
nitude of each event is not predictable but is given by the GR
law with a constantb value [16].

(vi) By the mechanism of cascades of triggering, the
ETAS model also predicts the possibility for large distance
and long-time buildup of foreshock activity as well as the
migration of foreshocks toward mainshocks[21,23].

These predictions of the ETAS model are in good agree-
ment with observations of the seismicity in Southern Califor-
nia [23].

B. Critical earthquake model

Maybe the first work on accelerated seismicity leading to
the concept of criticality is[25], who observed that the trail-
ing total sum of the source areas of medium-size earthquakes
accelerates with time on the approach to a large earthquake.
The theoretical ancestor of the critical earthquake concept
can probably be traced back to[32], who used a branching
model to illustrate a cascade of earthquake ruptures culmi-
nating in complete collapse interpreted as a great one. Ref-
erence[33] proposed a renormalization group analysis of a
percolation model of damage and rupture prior to an earth-
quake paralleling[34], which emphasized the critical point
nature of earthquake rupture following an inverse cascade
from small to large scales. References[35,36] were probably
the first ones to introduce the idea of a time-to-failure analy-
sis in the form of a second-order nonlinear differential equa-
tion, which for certain values of the parameters leads to a
solution of the form of a time-to-failure equation describing
the power-law acceleration of an observable with time:

estd ~ A − Bstc − tdz, s14d

where estd is, for instance, the cumulative Benioff strain
(square root of earthquake energy), A and B are positive
constants,tc is the critical time of the mainshock, and
0,z,1 is a critical exponent. Reference[37] introduced
Eq. (14) to fit and predict large earthquakes. Their justifica-
tion of Eq.(14) was a mechanical model of material damage.
Reference[37] did not mention the critical earthquake con-
cept. Reference[38] proposed to reinterpret[37] and all
these previous works and to generalize them using a statisti-
cal physics framework. The concept of a critical earthquake
described in Ref.[38] corresponds to viewing a major or
great earthquake as a genuine critical point in the statistical
physics sense. In a nutshell, a critical point is characterized
by long-range correlations and by power laws describing the
behavior of various observables on the approach to the criti-
cal point. This concept has been elaborated in subsequent
works [11,26,39–46]. The critical earthquake model predicts
a power-law increase of the number and of the average en-
ergy of foreshocks before large earthquakes. According to
this model, the modification of seismic activity should be
more apparent before larger mainshocks. Therefore, we
should measure a positive value fora f characterizing fore-
shocks. The critical model also predicts that the preparation
zone or foreshocks cluster sizeRf should increase with the
mainshock sizes as Rf ,sqf with qf .0, as observed by
[25,26] (see [40] for an extended compilation and discus-
sion).

V. PROPERTIES OF THE SYNTHETIC SEISMICITY
GENERATED BY THE OFC MODEL

A. Definitions of foreshocks and aftershocks

Extending the discovery of[3], we found that all the prop-
erties of real seismicity discussed in Sec. III exist at least at
a qualitative level in synthetic catalogs generated by the OFC
model. Earthquakes in the OFC model are clustered in space
and time. The seismicity rate after a large event(“main-
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shock”) is much larger than on average, due to the existence
of “aftershocks,” triggered by the mainshock. The seismicity
rate before a mainshock is also larger than the average rate:
events occurring at short times and short distances before a
mainshock are usually defined as “foreshocks.” The defini-
tion of “mainshocks,” “foreshocks,” and “aftershocks” is al-
ways arbitrary, and several methods have been proposed
[21,47]. We thus consider several alternative definitions.

Definition d=0. We adopt the usual definition and define
as a “mainshock” any earthquake of magnitudem which was
not preceded or followed by a larger earthquake in a time
window of lengthTsmd equal to 1% of the average return
time of an earthquake of magnitudem. Foreshocks(after-
shocks) are then selected as all earthquakes occurring within
the timeTsmd before(after) a mainshock. By definition, af-
tershocks and foreshocks ford=0 are thus smaller than their
mainshock. The value ofTsmd is chosen such that the seis-
micity rate in the time intervalf−Tsmd ;Tsmdg before and
after a mainshock of magnitudem is much larger than the
average(“background”) rate. Recent empirical and theoreti-
cal studies suggest that this definition might be arbitrary and
physically artificial[17,20,23,28,48–50]. Indeed, the magni-
tude of an earthquake in real seismicity seems to be unpre-
dictable [17]; therefore, the same mechanisms responsible
for the triggering of small earthquakes(usual “aftershocks”
for d=0) may also explain the triggering of larger earth-
quakes(defined as “mainshocks” ford=0) [23]. We thus use
two other definitions of foreshocks and aftershocks, which
do not constrain aftershocks and foreshocks to be smaller
than the mainshock, in order to test how the selection proce-
dure impacts on foreshock and aftershock properties.

Definition d=1. A mainshock is now defined as any earth-
quake of magnitudem that was not preceded by a larger
earthquake within the time windowTsmd, but can be fol-
lowed by a larger event. This rule aims to select as after-
shocks the events that have been triggered directly or indi-
rectly by the mainshock, removing the influence of large
earthquakes that occurred before the mainshock. Foreshocks
are thus smaller than mainshocks but aftershocks can be
larger.

Definition d=2. Same asd=1 without any constraint on
the magnitude of foreshocks, aftershocks and mainshocks.
Each event is considered as a mainshock. For foreshocks,
this corresponds to the “type-II” foreshocks introduced in
[16,23] in order to remove any spurious dependence of fore-
shock properties on the mainshock magnitude.

We use these three definitions in order to understand the
origin of foreshocks and aftershocks in the OFC model: are
foreshocks witnesses of a “critical” acceleration of seismicity
before the mainshock or is a mainshock triggered by the
foreshocks, the same way as aftershocks are triggered by the
mainshock? Can we explain the triggering of a large earth-
quake by a smaller earthquake using the same laws as for the
triggering of a small earthquake by a previous larger one? Is
the size of an earthquake predictable, based on its precursory
activity, as in the “critical” earthquake model or can any
small earthquake grow into a larger one, as predicted by
ETAS model?

B. Omori’s law (aftershocks) and
inverse Omori’s law (foreshocks)

Figure 1 shows the seismicity rate before(“foreshock se-
quence,” bottom) and after(“aftershock sequence,” top) 10
mainshocks of sizes.2048. We have selected mainshocks
with more than 1000 foreshocks or aftershocks, using defi-
nition d=0. We used a system of sizeL=2048 and a dissi-
pation indexk=2. Omori’s law (6) is clear for each indi-
vidual aftershock sequence while, for foreshocks, there is
almost no increase of the seismic rate for individual se-
quences: the inverse Omori’s law(7) is only observed when
stacking many sequences, like in the ETAS model[16]. This
suggests that the foreshock activity may be better described
by a cascade ETAS-type model than by a critical earthquake
model(but see below for other observations that may modu-
late this preliminary conclusion). The OFC model shares this
property with real seismicity[23] and with the ETAS model
[16].

We now describe the results obtained by averaging over a
large number of sequences, which allow us to decrease the
noise level and to look at smaller mainshocks. We have gen-
erated synthetic catalogs with the OFC model, using a lattice
sizeL=128, 256, 512, 1024, 2048 and different values of the
dissipation indexk=0.5, 1, 2, 4. For each catalog, we have
selected aftershocks and foreshocks following the different

FIG. 1. (Color online) Ten individual sequences of aftershocks
(a) and foreshocks(b), for mainshocks of sizes.2048 with more
than 1000 foreshocks or aftershocks, generated in a system of size
L=2048, dissipation indexk=2, and selected with definitiond=0.
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definitionsd=0, 1, 2 explained in Sec. V A. We have then
stacked all sequences by superposing them translated in time
so that the mainshock occurs at timet=0. We have first
analyzed the change of the seismicity rate before and after a
mainshock. For each range of mainshock sizes between 2
and 216, increasing by a factor 2 between each class, we
compute the average seismicity rateNfstd and Nastd as a
function of the time before and after the mainshock. The
results forL=2048,k=2, andd=0 are illustrated in Fig. 2.
The rate of aftershocks obeys Omori’s law(6) and the in-
crease of the seismicity rate observed when averaging over
many sequences follows the inverse Omori’s law(7). We
measure the Omori’s exponentspf andpa by fitting the num-
ber Nastd of aftershocks and the numberNfstd of foreshocks
by a power law,1/utupa,f using a linear regression of lnsNd
as a function of lnu tu, in the time intervalut u .5310−14 and
ut u , tmax, where the upper boundtmax is given by the condi-
tion that the seismicity rate is much larger than the back-
ground level.

For a mainshock of sizes=1024 sm<5d, the rate of af-
tershocks goes back to the background level attOFC=1.5
310−5—i.e., about 9 days after the mainshock according to
the correspondence(3). The actual aftershock duration
should be larger, because our selection of aftershocks on the
whole lattice of size 204832048 tends to increase the back-
ground and thus to reduce the time over which aftershocks
can be observed above the background seismicity. We obtain
a longer aftershock duration if we select as aftershocks earth-
quakes that occur up to one or two rupture lengths from the
mainshock, as done for real seismicity.

Table I provides the values of the exponentspa andpf as
a function ofL, k, andd. We find similar Omori’s exponents
for foreshocks and aftershocks withpf øpa,1. We observe
the same time dependence of the seismicity rate(same expo-
nentspa and pf) for all mainshock sizes, only the absolute
value of the seismicity rate depends on the mainshock mag-
nitude. The exponentspa andpf are found to increase withk
from pa<0.5 for k=0.5 topa<0.9 for k=4, but the duration
of the aftershock and foreshock sequence does not change
significantly with k. The number of foreshocks and after-
shocks thus increases if the dissipation increases and is al-
most negligible in the nondissipative case. The Omori’s ex-
ponents do not depend on the rules of selectiond.

C. Dependence of the number of aftershocks and foreshocks
with the mainshock size

Figure 3 represents the dependence of the number of af-
tershocks and foreshocks with the mainshock size, for differ-
ent rules of selectiond=0, 1, 2. We observe a power-law
increase of the number of foreshocksKf and aftershocksKa
defined in Eqs.(6) and(7) with the mainshock sizes accord-
ing to

Kassd , saa, Kfssd , saf , s15d

for s,103. The exponentsaa anda f measured fors,1000
increase with the dissipation indexk (see Table I). The re-
sults are very similar ford=1 andd=0. The exponentaa is
slightly smaller ford=1 than ford=0, because ford=0 we
impose aftershocks to be smaller than mainshocks. Small
events are more likely to trigger an event larger than them-
selves than larger mainshocks and thus to be rejected from
the analysis. Therefore the ruled=0 underestimates the num-
ber of earthquakes triggered by small mainshocks.

For d=2 and for smalls, Kassd andKfssd are much larger
than withd=0 and are almost independent ofs for s,100.
This results from the fact that, ford=2, a significant fraction
of “mainshocks” are triggered by a previous larger event, and
thus the events classified as aftershocks may be in fact trig-
gered by earthquakes that occurred before their “mainshock.”
The results obtained withd=2 recovers those obtained with
d=0 andd=1 for larges. The correct value of the exponent
aa is thus the value obtained ford=1.

The number of foreshocks is generally smaller than the
number of aftershocks and increases more slowly with
s sa f øaad.

FIG. 2. (Color online) Omori’s law [(a), aftershocks] and in-
verse Omori’s law[(b), foreshocks] for synthetic catalogs generated
with the OFC model withL=2048, dissipation indexk=2, and defi-
nition d=0. The seismicity rate is normalized by the background
rate and by the number of mainshocks in each class. The mainshock
size increases froms=2 (bottom curve) to s=216 (top curve) with a
factor of 2 between each curve.
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For large mainshock sizess.1000, we observe a satura-
tion of Ka and Kf, and the number of foreshocks and after-
shocks increases slower withs than predicted by Eqs.(15).

This saturation of the number of aftershocks for large
mainshocks explains why the clustering in the OFC model is

weaker than for real seismicity This saturation size does not
depend either onk or onL. The effect of the system sizeL is
only to change the shape of the functional form ofKassd and
Kfssd for large s: the saturation ofKa,fssd for s.1000 is
more obvious for smallerL.

TABLE I. Aftershock and foreshock properties in the OFC model as a function of the system sizeL and of the dissipation indexk, for
different definitions of foreshocks and aftershocksd (see Sec. V A). b is the exponent of the cumulative distribution of avalanche sizes for
the whole catalog(see Sec. V E). pa andpf are the Omori’s exponents for aftershocks and foreshocks, respectively(see Sec. V B). aa and
a f characterize the dependence of the aftershock and foreshock rates with the mainshock sizes (see Sec. V C) in the rangesø1024.qa and
qf describe the scaling of the aftershocks and foreshocks zone sizes withs (see Sec. V D), measured for 16øsø1024.N1024 is the average
number of aftershocks for a mainshock of size 1024øs,2048, in a time window equal to 1% of the recurrence time of an event of size
1024.

k L b d pa pf aa a f qa qf N1024

0.5 512 0.71 0 0.5 0.5 −0.2 −0.3 0.41

0.5 512 1 0.5 0.5 −0.2 0.44

0.5 512 2 0.5 0.5 −0.3 −0.5 0.50

0.5 1024 0.67 0 0.6 0.6 0.06 −0.29 0.58

0.5 1024 1 0.6 0.6 0.05 −0.21 0.66

0.5 1024 2 0.5 0.5 −0.42 −0.21 0.83

1 512 0.76 0 0.65 0.65 0.63 0.36 3.8

1 512 1 0.65 0.65 0.6 0.31 4.5

1 512 2 0.65 0.65 0.11 −0.1 7.0

1 1024 0.73 0 0.65 0.65 0.63 0.35 0.20 0.17 3.9

1 1024 1 0.65 0.65 0.58 0.34 0.19 0.13 5.2

1 1024 2 0.65 0.65 0.11 0.09 0.11 0.14 9.5

2 128 0.80 0 0.65 0.65 0.52 0.27 0.30 0.44 5.4

2 128 1 0.65 0.65 0.41 0.21 0.29 0.18 5.4

2 128 2 0.60 0.60 0.16 −0.1 0.27 0.01 5.6

2 256 0.81 0 0.75 0.75 0.77 0.57 0.35 0.29 20.0

2 256 1 0.70 0.70 0.67 0.52 0.31 0.26 24.0

2 256 2 0.70 0.70 0.21 0.01 0.21 0.03 31.0

2 512 0.80 0 0.75 0.75 0.82 0.64 0.37 0.37 29.0

2 512 1 0.75 0.75 0.75 0.61 0.31 0.32 43.0

2 512 2 0.75 0.75 0.16 0.01 0.13 0.06 88.0

2 1024 0.78 0 0.80 0.80 0.88 0.68 0.36 0.30 32.

2 1024 1 0.80 0.80 0.80 0.67 0.28 0.30 57.0

2 1024 2 0.75 0.75 0.14 0.03 0.08 0.07 138.0

2 2048 0.76 0 0.80 0.75 0.89 0.70 0.39 0.36 36.

2 2048 1 0.81 0.75 0.80 0.70 0.29 0.35 68.0

2 2048 2 0.80 0.75 0.11 0.00 0.07 0.09 215.0

4 512 0.95 0 0.85 0.80 0.90 0.71 0.34 0.40 187.0

4 512 1 0.85 0.80 0.77 0.66 0.23 0.39 257.0

4 512 2 0.80 0.80 0.22 0.07 0.10 0.19 410.0

4 1024 0.92 0 0.85 0.80 0.91 0.72 0.36 0.33 222.0

4 1024 1 0.80 0.80 0.78 0.66 0.26 0.30 379.0

4 1024 2 0.80 0.80 0.19 0.06 0.13 0.07 808.0
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D. Spatial distribution of foreshocks and aftershocks

Figure 4 shows the stress field immediately before and
after a large mainshock. Following the mainshock, many el-
ements on the boundary of the avalanche and within the
avalanche have been loaded by the rupture and are likely to
generate aftershocks after the mainshock. There are a few
large patches of elements within the avalanche that did not
break during the mainshock, as illustrated in the lower panels
of Fig. 4, but most aftershocks initiate on smaller clusters of
a few unbroken elements shown as white spots in the central
lower panel of Fig. 4. The density of such white spots ob-
served in this square is typical of the rest of the stress field
over the area spanned by the mainshock. In the language of
seismicity, such white spots are “asperities” which carry a
large stress after the mainshock and are nucleation point for
future aftershocks. These white spots are also found on the
avalanche boundaries.

The aftershock cluster sizeRa, defined as the average dis-
tance between the mainshock and its aftershocks, is close to
the mainshock size,=Îs at small times. At large times, the

proportion of uncorrelated events increases; therefore,Ra in-
creases with time up to a value close to the system sizeL
(see Fig. 5). We observe the same pattern for the spatial
distribution of foreshocks. In the short-time regime where
uncorrelated seismicity is negligible, we find a very weak, if
any, diffusion of aftershocks, as measured by an increase
Ra, tHa of the aftershock zone size with the time after the
mainshock. Similarly, we observe a very weak migration of
foreshocks toward the mainshock, characterized by a de-
creaseRf ,stc− tdHf of the foreshock zone as the mainshock
approaches. The exponentsHa and Hf are very close to 0,
showing that the sizes of the foreshock and aftershock zones
do not change significantly with time.

We observe on Fig. 6 a power-law increase of aftershock
zone size and of the foreshock zone size with the mainshock
size according to

Rassd , sqa, Rfssd , sqf , s16d

in the range 10,s,104. The exponentsqa andqf are given
in Table I as a function ofk, L, andd. In contrast with real
seismicity, the aftershock zone area is not proportional to the
mainshock sizes0.5, but it increases slower withs (qa
<0.3,0.5 for d=0 or 1). This is probably due to the effect
of secondary aftershocks, which increase the effective size of
the aftershock zone for small mainshocks. Secondary after-
shocks are more important ford=1 than for d=0, which
explains whyqa is smaller ford=1 than ford=0. The aver-
age value of the foreshock zone(“zone of mainshock prepa-
ration”) is smaller than the aftershock zone, except for defi-
nition d=2.

An increase ofRf with s according to Eqs.(16) has been
reported by Refs.[25,26] for individual sequences, with an
exponentqf =0.44 [26], but was not observed by Ref.[23]
when using stacked sequences and when allowing foreshocks
to be larger that the mainshocksd=2d. This increase ofRf

with s is not observed by the ETAS model, because the mag-
nitude of each earthquake is drawn at random, independently
of previous seismicity, and thus all properties of foreshocks
must be independent of the mainshock size.

For d=2, the average zone sizesRa and of Rf are much
larger than ford=0, because we include foreshocks and af-
tershocks larger than the mainshock. Fors,1000, the values
of Ra andRf are almost constant of the order ofRa,f <100.
This may reflect the fact that, ford=2 and for small main-
shocks, most aftershocks are not triggered by the mainshock
but by a previous larger event.

E. Distribution of avalanche sizes

For the whole catalogs, the distribution of event sizes is a
power law characterized by an exponentb, with an exponen-
tial roll-off for large sizess.10−3L2. Table I shows that the
exponentb increases as the dissipation index increases, from
b<0.7 for k=0.5 to the realistic valueb<0.95 for k=4, in
agreement with previous works[10,51].

Figure 7 tests the stationarity of the magnitude distribu-
tion for foreshocks and aftershocks. The magnitude distribu-
tions for foreshocks and aftershocks have been fitted with
expression(11) and these fits are shown as the solid lines.

FIG. 3. (Color online) Number of aftershocksKa (circles) and
foreshocksKf (crosses) as a function of the mainshock sizes for
synthetic catalogs generated with the OFC model withL=2048,
dissipation indexk=2, and definitiond=0 (a), d=1 (b), andd=2
(c).
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The deviation of the magnitude distribution from the average
GR law for foreshocks and aftershocks are well represented
by Eq. (11) with b8 in the range 0.3–0.5 and withQstd in-
creasing as a power law according to Eq.(13) with n<0.1
for foreshocks and for aftershocks.

For aftershocks, the time dependence ofQstd describes a
decrease of the deviation from the GR law for latter after-
shocks. While these fits are good, there is an important ca-
veat: the predictionb8=b−aa of the ETAS model is not veri-
fied here, as the OFC model givesb8<0.4 andaa<b.

The modification of the magnitude distribution for after-
shocks in the OFC model is much weaker than for fore-
shocks, but is significant. This implies that the magnitude
distribution in the OFC model is not stationary because the
magnitude of triggered earthquakes is correlated with the
mainshock magnitude, in contradiction with a crucial hy-
pothesis of the ETAS model and with real catalogs. Figure 8
shows that, ford=1 (no constraint on aftershock magni-
tudes), the change of the magnitude distribution is almost
independent of the mainshock magnitude(like in the ETAS
model). However, there is a larger proportion of medium-size
events for smaller mainshocks than for larger ones. This
means that smaller mainshocks have a tendency to trigger
smaller aftershocks than larger mainshocks.

This result is in contradiction with the ETAS model,
which does not reproduce a dependence of the aftershock
magnitude as a function of the size of the triggering earth-
quake or as a function of the time since the mainshock. Ob-
servations of real seismicity[17] do not show any depen-
dence between the aftershock magnitude and the mainshock
magnitude, but the catalogs available are much smaller than
for our OFC simulations.

VI. MECHANISMS FOR FORESHOCKS AND
AFTERSHOCKS IN THE OFC MODEL

Is the increase of the number of aftershocks and fore-
shocks with the mainshock magnitude real or is it just the
result of a selection bias introduced by the standard defini-
tion d=0, which requires that mainshocks are the largest
events in the cluster? Indeed, in the OFC catalogs, the clear
power-law increase of the number of aftershocks and fore-
shocks with the sizes of the mainshock, found when we
define the mainshock as the largest eventsd=0d, almost dis-
appears when aftershocks or foreshocks are not constrained
to be smaller than the mainshocksd=2d, as shown in Fig. 3.
The question of the impact of the definition is thus essential.

For foreshocks, we consider two possible interpretations,
the ETAS model described in Sec. IV A and the critical
earthquake model(CEM) summarized in Sec. IV B. The fact
that, usingd=0, both the number of foreshocks and the av-
erage foreshock cluster size increase with the mainshock size
s seems to favor the critical model, but Ref.[16] has shown
that the constraint that foreshocks must be smaller than the
mainshocksd=0d leads to an artificial increase of the number
of foreshocks and of the foreshock cluster size withs (see
Fig. 5 of [16]). However, this spurious increase of the num-
ber of foreshocks with the mainshock magnitude should be
observed only for smalls and should not exist in the case
d=2 (without constraints on foreshock and mainshock mag-
nitudes). The fact that a weak increase of the number of
foreshocks withs is observed even for very larges and for
all definitionsd=0, 1, 2 suggests that the effect is genuine.
Such a dependence of foreshock properties on the mainshock
size cannot be reproduced with the ETAS model, but sug-

FIG. 4. (Color online) Stress field immediately before(a) and after(b) a mainshock. The stress change due to the mainshock in shown
in (c). The elements that broke during the avalanche are shown in dark in(c) (stress decrease) and were mostly close to the rupture threshold
before the mainshock[light gray in (a)]. The upper panels show the whole grid of sizeL=1024 and the lower plots represent a subset of the
grid delineated by the square in the upper plot.
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gests that the critical model provides a more relevant de-
scription of these observations.

The cased=2 destroys the dependence of the aftershock
number withs for small s, which is a real physical property
of aftershocks because it is also observed ford=1. The same
effect may also be at work for foreshocks and explain why, if
the properties of foreshocks are physically dependent on the
mainshock magnitude, this dependence is not observed when
using d=2. Definition d=2 may be mixing “critical
foreshocks”—i.e., events that belong to the preparation
phase of the future mainshock—with “triggering-triggered”
pairs (which are the usual “foreshock-mainshock” pairs in
the ETAS model). Thus, the absence of conditioningsd=2d
seems to destroy the dependence of both the foreshock and
aftershock properties with the mainshock magnitudes—i.e.,
aa,f <0 andqa,f <0 both for foreshocks and aftershocks. But
for aftershocks, we know it to be true that the dependence of
the numbersaad and the cluster sizesqad are real and physi-
cal because they are observed in the cased=1 which do not
constrain aftershocks to be smaller than the mainshocks.

For aftershocks selected according tod=2 and for small
mainshock sizess, the scenario, according to which most

aftershocks are not triggered by the mainshockper sebut by
a previous larger event, seems to explain both the fact that(i)
the number of aftershocks is almost constant withs for
s,100 and(ii ) the size of the aftershock cluster is almost
constant withs for small s. It is, however, surprising, if this
interpretation is correct, that we observe a pure Omori’s law
for aftershocks and foreshocks in the cased=2, without any
change in the Omori’s exponent withs and without any roll-
off at small times.

In order to better understand the mechanism responsible
for aftershocks in the OFC model, we have imposed several
types of perturbations to the normal course of an OFC simu-
lation to obtain the response of the system. First, we have
simulated random isolated disturbances consisting in choos-
ing randomly and independently 1024 sites and adding to
them random amounts of stress drawn in the interval[0,
0.01] or [0, 0.1]. Repeating such disturbance 100 000 times,
we find no observable seismicity triggered by this perturba-
tion. This shows that the aftershocks require a coherent spa-

FIG. 5. (Color online) Average distance between mainshocks
and aftershocks(a) and mainshocks and foreshocks(b) as a function
of the time after(a) or before (b) the mainshock, for synthetic
catalogs generated with the OFC model withL=2048, dissipation
indexk=2, and definitiond=0. Each curve corresponds to a differ-
ent mainshock size increasing froms=2 (bottom curve) to s=216

(top curve) with a factor of 2 between each curve. FIG. 6. (Color online) Average distancesRa (circles) and Rf

(crosses) as a function of the mainshock sizes, for k=2, L=2048,
and for definitionsd=0 (a), d=1 (b), andd=2 (c). The lines are fits
of Ra,fssd by a power lawsq according to Eq.(16).
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tial organization over a broad area. In contrast, pasting(or
grafting) the stress map as shown in Fig. 4 of those sites that
participated in a given large mainshock in a given simulation
and their nearest neighbors onto another independent simu-
lation gives a perfect Omori’s law following this graft in this
second simulation as if the foreign stress map of the first
simulation was part of the second simulation. The resulting
aftershock sequences are similar to natural sequences. This
demonstrates that the presence of asperities close to the fail-
ure threshold inside the boundary of the avalanche can pro-
duce realistic aftershock sequences with an Omori’s law tem-
poral decay. To investigate further if it is the spatial
connectivity of the perturbation which is important to get
aftershocks, we have also raised simultaneously the stress by
various amounts within squares of size 64364. Performing
this perturbation 40 000 times at random instants, we ob-
serve that this sometimes results in quite large earthquakes
immediately following the perturbation, but there is no sig-
nificant activity afterwards and nothing that looks like an
Omori’s law of aftershocks. Thus, it seems impossible to
generate aftershocks by introducing a random or determinis-
tic spatially extended perturbation. This suggests that after-
shocks require not only the occurrence of mainshocks to re-
distribute stress but also a spatial organization of the stress
field prior to the mainshock so that many “asperities”(as
illustrated in Fig. 4) can be created by the interplay of the

stress organization before the mainshock and the stress redis-
tribution by the mainshock.

VII. CONCLUSION

The results obtained in this paper can be viewed from two
different perspectives. On the one hand, we are adding to the
phenomenology of one of the most studied model of self-
organized criticality. Extending Hergarten and Neugebauer’s
announcement[3], we have shown evidence that the self-
organized critical state of the OFC model is much richer than
previously thought, with important correlation patterns in
space and time between avalanches. We have obtained quan-
titative scaling laws describing the spatiotemporal clustering
of events in the OFC model. On the other hand, we have
shown that what is probably the simplest possible mecha-
nism for the generation of earthquakes(slow tectonic loading
and sudden stress relaxation with local stress redistribution)
is sufficient to recover essentially all known properties docu-
mented in seismic catalogs, at a qualitative level. Specifi-
cally, we have found that foreshocks and aftershocks follow
Omori’s power laws, as in real seismicity but with smaller
exponents.

We have found the same scaling of the number of after-
shocks with the mainshock size as in real seismicity. In con-
trast with real seismicity, we also found a power-law increase

FIG. 7. (Color online) Aftershock(a) and foreshock(c) size distributions as a function of the time before or after the mainshock, fork=2
andL=1024, and for a mainshock size in the ranges=2048–4096. Aftershocks were selected withd=1 and foreshocks withd=2 (without
constrains on the magnitude of foreshocks and aftershocks). The avalanche size distributions are constructed with a logarithmic binning
(linear bin in magnitudes), whose slope gives the GRb value. The dashed line in(a) in (c) shows the size distribution for the whole catalog
for reference. The different curves correspond to different time windows closer and closer to the mainshock, fromutc− tu=5310−5 (crosses)
to utc− tu=5310−14 (circles). The solid lines in(a) and (c) are the fit of the foreshock and aftershock size distributionPssd for s,104 as
defined in expression(11). The corresponding values ofb8std, Eq. (12), andQstd, Eq. (13), are shown in(b) and(d) for foreshocks(crosses)
and aftershocks(circles), as a function of time before or after the mainshock.
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of the number of foreshocks with the mainshock size. The
nucleation of aftershocks at “asperities” located on the main-
shock rupture plane or on the boundary of the avalanche is
also in agreement with observations. These findings are in-
teresting because they add on the list of possible mechanisms

for foreshocks and aftershocks that have been discussed pre-
viously in the literature.

We also found that the predictability increases with the
mainshock magnitude in the OFC model, because the num-
ber of foreshocks seems to increase with the magnitude of
the mainshock, a feature that is not observed in real seismic-
ity [23]. See the debate in Nature at http://helix.nature.com/
debates/earthquake/ and[52,53] for related discussions on
the predictability of real earthquakes and the use of models
from statistical physics.

We have systematically compared the statistical properties
of the avalanches generated by the dynamics of the OFC
model with those predicted by the ETAS model on the one
hand and by the critical earthquake model on the other hand.
These two models constitute end-member models of seismic-
ity. While most of the OFC dynamics can be qualitatively
captured by the ETAS model, this property that the number
of foreshocks seems to increase with the magnitude of the
mainshock is better explained by the critical earthquake
model. This suggests a picture in which future avalanches are
triggered by past avalanches through “asperities” located ei-
ther within the plane of past avalanches or at their bound-
aries. In addition, we find that this triggering mechanism
presents a degree of cooperativity, as the number of fore-
shocks increases with the mainshock size. In other words,
this suggests that asperities interact via avalanches, and when
their number and size increase in a given location, they can
produce larger avalanches.
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